Or1IMAL CONTROL OF EXECUTION
COSTS FOR PORTFOLIOS

The authors apply stochastic dynamic programming to derive trading strategies that
minimize the expected cost of executing a portfolio of securities over a fixed time period.

They test their strategies using real-world stock data.

he rapid growth in equity investing,
driven by the increasing popularity
of mutual funds and defined-contri-
bution retirement plans, has led to a
rising concentration of assets among institutional
money managers. A typical portfolio manager
now oversees a large portfolio of several hundred
securities, with individual positions that might
constitute a significant fraction of the sccurity’s
average daily volumne. Both active managers and
passive indexers must frequently rebalance their
portfolios, to inclade new stock picks, to sell
stocks that are out of favor, or to improve the
tracking of a given index or benchmark. This
generates sizeable orders across many stocks that
must be exccuted within a relatively short time
-horizon, and that must be executed together so
as to maintain the portfolio’ risk/reward charac-
teristics. The transaction costs associated with
trading such “lists” of securities—often called ex-
ecution costs—can be substantial.

Execution costs have several components: ex-
plicit costs such as commissions and bid/ask
spreads, and costs that are harder to quantify,
such as the oppertunity cost of waiting and the price
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impact from trading. Opportunity costs arise be-
cause market prices are moving constantly and
can move favorably or unfavorably without
warning, generating uncxpected profits or lost
opportunities while a portfolio manager hesi-
tates. Price impact is the typically unfavorable
effect on prices that the act of trading creates,
not unlike the turbulence that a ship’s wake gen-
erates. A sccurity’s seller will, by the very act of
selling, push down the security’s price, yielding
lower procecds from the sale, and similarly for
the buyer. Moreover, the larger the order, the
more heavily the trade affects the price. For
portfolios that turn over frequently or have large
positions to trade, these costs can significantly
hinder the fund’s overall performance.!

Recent studies show that institutional in-
vestors often break up their larger trades into
smaller “packages” that they execute over the
course of several days.”¥ "There is a compelling
ceonomic rationale for package trading. Trading
is fundamentally a dynamic, path-dependent,
stochastic problem. Trading takes time, and the
act of trading affects price and price dynamics,
which, in turn, affect exccution costs. Control-
ling the exccution costs of large blocks of stock
must be accomplished by trading over a num-
ber of time periods. This was recognized by
Dimitris Bertsimas and Andrew Lo, who used
stochastic dynamic-programming technicues to

"T'his article was edited to CiSE house style and space ve-
quircments. For the full version, contact Andrew Lo at
the address listed for him on p. 23.
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derive optimal or besi-execution strategies.’

In this article, we extend the single-asset
framework Bertsimas and Lo outlined, to con-
struct best-execution strategies for portfolio
problems. We devcloped a specification for these
problems that is both empirically plausible and
computationally tractable to implement, The
closed-form solution provides insight into the
naturc of trading portfolios. To quantify the po-
tential cost savings of our strategies, we fit the
parameters of our price-impact model using his-
torical data on 25 Iarge-cap New York Stock Ex-
change (NYSE} stocks.

The portfolio problem
Specifically, we solve this problem:

* given fixed blocks of shares in # stocks,

5=[515...5,), to be purchased within a fixed
finite number of periods 7, and

* given a set of price dynamics that capture
price impact (that is, an individual trade’s ex-
ecution price as a function of the shares
traded and other “state” variables),

¢ find the optimal seguence of wades (as a func-
tion of the state variables) that minimizes
the expected execution costs.

Because, as is well-known, the short-term de-
mand curves for even the most actvely traded
equities are not perfectly elastic,” a market or-
der at date O for the entire block £ is clearly not
an optimal trading strategy.

{We follow the common convention that all
vectors are column vectors unless they are ex-
plicitly transposed, and boldface Roman and
Greek letters denote vectors and matrices. For
simplicity and without loss in generality, we con-
sider the case of purchasing § only. Selling § and
a combination of buying certain stocks and sell-
ing others can easily be accommodated with the
appropriate sign conventions [positive numbers
for purchases, negative for sales].)

Lets, = {51 525 ..., 5} be the number of shares
of each stock acquired in period t at prices p, =
P15 P23 -5 Pus}y where 2= 1, ..., T We can ex-
press the investor’s objective as

T
MinEy 3 pis, (1)
ot =1

subject to

Pt =f(Pr—1, xf; S.ﬁr Er)

%, =gy, My

1=

5 =5 2)

Il

:
where ¥, Is 4 vector of state variables, €, is vector
white noise, and f{-) and g(-) are the state equations
or laws of motion that incorporate the price dy-
namics of p,, the price impact of trading s,, and the
dynamics of the state variables. We might also
wish to impose additional constraints—for exam-
ple, a no-sales constraint, s, 2 0—or other condi-
tions that are placed on the portfolio manager by
institutional restrictions, tax considerations, or
other aspects of his or her investment process.

(If a portfolioc manager is attempting to ac-
quire a block of securities, selling the same se-
curities during the acquisition period is difficult
to justify [unless, of course, the manager has ex-
tremely accurate negative information regard-
ing the security’s price, which is somewhar in-
consistent with the original premise that heisa
buyer]. Indeed, in many cases, it is illegal because
it is considered a violation of the fiduciary trust
that portfolio managers have to act in the best
interests of their investors.)

The portfolio case contains several interesting
teatures that the single-stock analysis of Bertsi-
mas and Lo and others did not capture. Perhaps
the most important feature is the ability to cap-
ture cross-stock relations such as the cross-auto-
correlations reported by Andrew Lo and Craig
MacKinlay.® Price movements in one stock can
induce similar movements in the price of another,
because of cither common factors driving both
or linked trading strategies-—for example, pairs
trading, index arbitrage, and risk arbitrage. In
such cases, the price impact of trading a portfolio
might be larger than the sum of the price impact
of trading the individual stocks separately.

Alternatively, if some stocks are negatively
correlated (perhaps because of portfolio substi-
tution effects) or if the portfolio to be executed
includes both purchases and sales, the portfo-
lio execution cost might be lower than the sum
of the individual stocks’ execution costs. This
is because of a-diversification effect in which
trades of one stock lower the price impact of
trades in another. Whether execution costs are
magnified or mollified in the portfolio case s,
of course, an empirical issue that turns on the
law of motion for the vector of prices and state
variables, In either case, the portfolio secting
clearly is considerably more complex than the
single-stock case.

NOVEMBER/DECEMBER 1999

Py



The state equations

We now present a specification for the state
equations that incorporates a multivariate price-
impact function with eross-stock interactions.

Let the execution price p, be the sum of two
companents:

=P+ 0, (3)

where P, is 2 “no-impact” price—the price that
would prevail in the ahsence of any market im-
pact—and &, is the impact. A plausible and ob-
servable proxy for the no-impact price is the
midpoint of the bid/offer spread, although it can
be arbitrary so long as the trade size s, does not
affect it. For convenience, and to ensure non-
negative prices, we model §, as vector-geomet-
ric Brownian motion:

p=exp(Z)p,_y )

where Z, is a diagonal matrix whose diagonal isa
normal random vector z, with mean g, and co-
variance matrix X,. The exp(-) operator denotes
the matrix exponential, which, in this case, re-
duces to the element-wise exponential of the di-
agonal entries in Z,,

For &, we set

§ =P(APs, +By,), (5)

where P, = diag( #;] and diag(-} is the diagonaliza-
tion operator that maps its vector argument into a
diagonal matrix with the veetor as the diagonal.
This specification captures the impact of trading
s, shares on the transaction prices p,. It also im-
plies that as a percentage of the no-impact pricc,
B, , the price impact is a linear function of the dol-
lar value of the trade and other state variables #,.
The price impact’s form (see Equation 5) differs
from the single-stock case in that the percentage
price-impact function for each stock 7 is a linear
function, 4B,s,, of the dollar values of the trades
of all # stocks, not just of stock 7. In the special
case where A is diagonal, the portfolio problem
reduces to # independent single-stock problems
solved by Bertsimas and Lo.®

"This specification of the dynamics of p, has sev-
eral advantages over other specifications (see the
“Other specifications” sidebar). First, p, is guar-
anteed to be nonnegative, and p, is guaranteed o
be nonnegative under mild restrictions on &,
Second, separating the transaction price p, into
the ne-impact component f#; and impact compo-
nent &, makes the trade’s price impact temporary.
So, the impact affects the current transaction
price but does not affect future prices. Third, the

percentage price impact increases linearly with
the trade size, which is empirically plausible."*"!
Fourth, Equation 3 implies 2 natural decomposi-
tion of execution costs, decoupling market-
microstructure effects from price dynamics,
which is closely related to André Perold’s notion
of implementation shortfall.'? Finally, we shall
see in “The dynamic-programming selution”
section that Equation 3 admits a closed-form so-
lution in which the hest-execution strategy is a
simple linear function of the state variables and
in which the optimal-value function is quadratic.

(Because Equation 3 implies that price impact
is temporary, affecting only p, and not j,, the ob-
jective function [see Equation 1] separates into
two terms. The first is the no-impact cost of ex-
ecution and the second is the total impact cost,
This decomposition is precisely the one Perold
proposed in his definition of implementation
shorttall, bue we apply it to executing 5. In par-
ticular, the first term gives the “paper” return or
execution cost, and the sum of the two terms
gives the actual cost. So the second term is the
implementation shortfall in executing ¥.)

The presence of the vector x, in Equation §
capturces the potential influence of changing
market conditions or private information about
the securities on the price impact 8, For exam-
ple, ; might be the return on the S&P 500 in-
dex, a common component in the price of most
equities. We model x, as a vector with r ele-
ments, allowing for multiple sources of infor-
mation to influence execution prices (or several
lags of a single state variable),

To complete our specification of the state
equation, we must specify the dynamics of x,.
For simplicity, we let

x,=Cx 1+ 1, (6)

where 7, is vector white noise with mean 0 and
covariance matrix ¥, Because ¥, is a vector au-
toregressive process with one lag (an “AR(1)”),
we can capture varying degrees of predictability
in information or market conditions, The ma-
trices A and B measure the price impact’s sensi-
tivity ta trade size and market conditions. A
must be positive definite; B is arbitrary; € must
have eigenvalues less than unity in modulus (to
ensure stationary of x,).

The dynamic-programming solution

We use a stochastic dynamic-programming al-
gorithm to solve the optimal-execution problem
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{see Equation 1). We denote by w, the vector of

- ; w =3
shares remaining to be bought {or sold) at time . !

W, =W — 5

! _ Wy = 0

wl =5

wy, =0 Linear-percentage price impact
The condition w,; = 0 ensures that all 5 shares As with all dynamic-programming solutions,
are executed by time 7. The complete statement  we begin at the end. Vy is the optimal value
of the problem is then function at the end of cur wrading horizon, pe-

riod T. By definition,
l\{/Il}nF 2 s,

, Vl‘(ﬁT;xTer') = %:?ET[P'}'ST] = ET[P’;"WT‘]
i=1

=[Pote, + APyw, +Be )] w,
@)

Because this is the last period and -, must be
set to zero, the remaining order wy must exe-
cute. '§o the optimal trade size s} =wp. Becausce
W =W T Pr= P%, we can reexpress Equation 7 as

subject to
1= (¥ 5,6
¥ :g—(xt%,nt)
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V’]'(f’T:xT Wy )

rp ) ) s P
=€, PTw’l' + w%BFA’PI‘W’[' -+ xTB P»{-’w-[- .

which shows that the optimal value function is
linear in 2y and linear-quadratic in wr By con-
tinuing recursively in this fashion and applying
Bellman’s principle of optimality,”® we find that
the optimal value function V., is
Veoi= ?S/IiT}RT—}e[P}—HT% +Vipa
Tk
Py s ¥7 b W7 1))

’ r ’
= enDn,keﬂ + erDr,i'er + enEkx'IPk
. , ,
+xp_ o Fe, v xr Gy v xp (Howy
’ ” ? ’ ~F
+ Wy Frodpag + K v i Lye, (8)

7
+Wr_ N Wr_,

This yields the hest-execution strategy
Sp_p = A p¥rp + Ay Wy g+ Ape, )

{For explicit expressions for D, ¢, Dy, Fy, Fy, Gy,
H, 7, K, Ly, and Ny, and for A, Ay g and Ay,
see the Appendix posted at http://computer.
org/cise.) The recursion (see Leuation 8) and
best-execution strategy (see Equation 9) com-
pletely characterize the solution to our original
problem, and yield the expected best-execution
cost, V., as a by-product.

Linear price impact

Under the law of motion (see Equations A and
B in the sidebar), Bertsimas and Lo® show that
the portfclio problem (see Equation 1) can be
solved with Bellman'’s equation, which yields the
following best-execution strategy,

. Ly, |
Spop = (I—EAx--llA Yy + EAkllBkﬁlcx’f‘hk »

(10}

and optimal-value funcrion,

Vro(Pre X pwr )
= o Wy + W Ay
+aq_y Bewp_y + 20, Cop_y + 4,

fork=0,..., T—1, where

B, = lC’Bk_,( ) A B,

By=0
3 0

, 1, .
C, - CC&_,C~ZCBA_I(AA_1) 'B, \.C, C,=0

dy=di A BN Gy ) dy =0
The best-cxecution strategy (see Equation 10}
is qualitatively similar to the optimal single-stock
strategy of Bertsimas and Lo.® However, it has
one key difference: in the portfolio case, unless
the matrix A is diagonal, the best-execution
strategy for one stock will depend on the para-
meters and state variables of all the other stocks.
To see this, observe that the matrix coefficient

1 — I
[1 - EA,(,,'lA ]

multiplying @y, in Equation 10 will generally
not be a diagonal matrix unless A is diagonal. Of
course, if A is diagonal, trading in one stock has
no price impact on any other stocks (see Equa-
tion A in the sidebar). So, the portfolio problem
essentially reduces to # independent single-stock
probletns.

So, whether the portfolio best-execution cost
is greater or less than the sum of the individual
stacks’ best-execution costs depends wholly on
the values in 4. This is an empirical issue that
we consider in detail later.

Imposing constraints

Most practical applications will have con-
straints on the kind of exceution strategies that
institutional investors can follow. For cxample, if
a block of shares is to be purchased within 7 pe-
riods, selling the stock during these T periods is
very difficult to justify even if such sales are war-
ranted by the best-execution strategy. (Other
common constraints include scctor-balance,
turnover, tax-motivated, and, in the portfolio
case, dollar-balance constraints, This last type of
constraint—the portfolio’ dollar value at the end
of trading must lic within some fixed interval—is
one of the most diffcult to impose. This is be-
cause the constraint is a function of the entire
vector of prices, which is stochastic. Bertsimas
and Lo devised a probabilistic method of impos--
ing such constraints.”) So, in practice, buy pro-
grams will almost always have nonnegativity con-
straints, and sell programs will almost always
have nonpositivity constraints. Such constraints
are often binding for best-exceution strategies,
particularly when the information variable has a
large effect on price impact.
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Why constraints are problematic

Although there are well-known techniques for
solving constrained-optimization problems in 2
static setting, corresponding techniques for dy-
namic-optimization problems have not vet been
developed. To see why this task 1s difficult, con-
sider the simplest case of imposing nonnegativ-
ity constraints s, 2 0 in the linear percentage
price-impact model with only one asset (scalar
equations). Without any constraints, the opti-
mal-value function I, is quadratic in the state
variable Wy, so the Bellman equation can be
easily solved in closed form. But if nonnegativity
constraints are imposed, V7, becomes a piece-
wise-quadratic function, with 3% picces.

To see how this arises, observe that for & = 0,
the optimal control is s% = wrand V7 is a qua-
dratic function of w, In the next stage, k= 1, we
calculate the optimal control s%.; by minimizing
a quadratic function of s subject to the con-
straints 0 < s <@y 4. The solution is

0 ifs,;, <0
5’}‘_1 =985, 71 if0< $1,T-1 <Wr_
Wry if s!t,T*l >Wr
where 4

L

Syro1= F; [Aw,lpT—le—l +A e+ A,

Y
This partitions the range of ;. into three in-
tervals; a different optimal control s3; is over
each interval, and a continuous quadratic func-
tion of wy_; is within each interval V7. ;.

The next stage, k = 2, partitions each of these
three intervals into another three intervals, each
with a different optimal contral s%.;, and so on.
The number of intervals grows exponentially
with k. Therefore, even in this simple case, cal-
culating s%.; and /7, exactly is only feasible for a
very small number of periods T, (For example,
when T =20 there are 32° = 3, 486,784,401 inter-
vals at the last stage of the dynamic program!)

A static-approximation method

Faced with these difficulties, we propose an
approximation method to address the optimal
control problem with constraints. The dynamic-
optimization algorithm we presented for the case
without nonnegativity constraints gives the best-
execution strategy 7., (see Equation 9} as a func-
tion of the state vector (¥1p, w7 pfi7) at time
T —k. Attime t = I, the expected execution cost
V1 is

T
Vi=E| Y pisi
k=1

T -~ - A~
= E[E[Pke,, + P(AP,s, + Bx,)Y's,
k=1

= E[e,’,f’lsl + s{IN’,A’I_’lsl + x{B'ﬁisl + e,’,Z‘.j’ls2
+ 131312214’22131;2 +(Cx,+ 1,YB'Z,Ps,
+e, 22231315‘3 + S;IB12322 A’Zzzgf’] 5
+ [ C(Cr, + m)+ my] B'Z,Z,Ps,
+L
+€,2,2;1 ZPsy
BT 1 BT 7 TP,
+[CTx} + CTﬁlnz +L + Cnr + nT]
B2, 2B, |

where B, = diaglp,] and Z,, = exp(Z,). Taking the
expectation of the cost function yields

Vi =eBs +s APs + % BBy
+e;Qf’Lr? vy (d e R)I-’Is! + x;C'B'Qf’lsZ
v Q'Br, v 5 (A e ReR)Bs, 4 &/ (CYFQ'Bs,

+L

+e”'Q'ri)LIT +_r; (A"R°R!L 'R'R)f".r.,

an

+x'(C"YBQ Py,

where Q is a (# x n) diagonal matrix with
entries

q; = exp(uz,i +%zz,ﬁ] ;

Ris an (# x n) symmetric matrix with elements

1
Py = exXp| Moy Tl S B+ Ey ZEz,# ,
2

and the matrix dot operator “o” denotes an ele-
ment-wise matrix multiplication—that is, AeB=

Equation 11 depends on the entire sequence
of controls, {s, §3, ..., §4}, and the observed states
at time ¢ = 1, p and x;, In general, each control
variable s, depends on the state at time 2, Under
the static-approximation method, we will restrict
the class of controls to those that s, depend sniy
on the state at time ¢ = 1, That is, they depend
only on prices Piand information vector x.
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Table 1. Ticker symbols, CUSIPs, company names, and closing prices
on a randomly selected day in 1996 for 25 stocks that constitute
the sample portfolio for the empirical implementation of the best-
execution strategy

Trcker CUSIP Company name R 'Cfoiing‘prtce: ’
. CAHP - 02660910 - AMER HOME: PRODS 640625
AN - 03190510 © JAMOCO | © 705000
(BLS: “07986010 ' ZBELLSOUTH MW :
: ch’v '
DD
,’,Dls_:.i.;._ .
I DOW: " 26054310 OW CHEMICAL: #
L F --~-u3453vevo«_- ORD MOTOR .

SN "31358610 - FANNIEMAE ~ ' 7" o
~GE - - 36960410 | GENERAL ELECTRIC Y10 9375 a ;*
CIGM: 370442100 U GM L ¢ a i o 481250

L HWP. 42823610“ HEWLETT PACKARD ~ . 48.81 25

tiBM IBM; L

2N JOHNSON: & ]@HNSON ST 4375

-7 KO: 5 0° "COCACOIA®; 50 ;3 2
-MCD 7 MCDONALDS
TMO < < “PHILIP MORRIS *

MOB 607059103 AMOBIL
: _MR_Kf 58933110 | MERCK &'CO
CPEP. 71 344810 peps;cp' Y

,]42?181

Under this approximation, the problem reduees
to this quadratic-optimization problem:

Minimize e:ﬁ.r, +s(/l“1~’ls‘ + .r;li'ésl +e;Q}~’|.r2
+5(A 2 RIPs, + 5 CBQBs, + £ @ P,
45 (A« Re B)Ps, + 2 (CYBQ'Bs,

+1

+eQ Bs, 15, (A s ReReL «ReB)Ps,

Tt

+x(C"YB'Q s,

E:Zsf
I (12)

r=Lk,T

I 4

subject to

(12)

We solve Equation 12 at time z = 1 and find the
“optimal” controls si,..., s, where the super-
script indicates that this is the period-1 solution
of Equation 12, However, we only implement the
control s]. After we observe the state vector in

period t = 2, we re-solve Lquatlon 12 for time
¢ =2 and find a new set ofcontrols §3, ..., %, but
only implement the control s . We continue in
this fashion, at cach step solving a convex qua-
dratic optimization problem that can be handled
efficiently using commercially available pack-
ages—for example, C-Plex or Minos.

"I'he static-approximation method might not
vield adequate approximations in all cases. Flow-
ever, in many of the examples we cxplored, the
technique performs admirably (for example, the
empirical analysis in the next section). Of course,
deriving accurate bounds on the approximation
error in the most intercsting cases is difficult be-
cause the optimal solutions are unknown for
these cases. We hope to explore the theorctical
properties of the static-approximation method
in future research.

An empirical example

We now implement the best-execution strate-
gies for a hypothetical stock portfolio. Specifically,
we estimate the parameters of the linear-percent-
age model in “The state equations” section for
cach stock, We then construct several portfolio-
rebalancing scenarios and compare the best-exe-
cution strategy with a “naive” strategy of trading
equal-size lots in each time period.

The data

Our empirical analysis draws on three data
sources. The pritmary source is a proprietary
record of trades performed over the NYSE DOT
system by the trading desk at Investment Tech-
nologies Group (I'TG) on every trading day be-
tween 2 January and 31 December 1996. Each
trade is cataloged with this information: order-
submission date and time, order execution date
and time, whether it is a buy or sell order, size in
shares, execution price, and order type (for exam-
ple, market order or limit order). We chose the
25 stocks that had the greatest number of market
orders over the year-long interval (see Table 1),

Because of our selection rule, our sample con-
sists of companies with large market capitaliza-
tions. This ensures that we will have enough data
to fit the model and arrive at reasonably accu-
rate estimates of the parameters. Butsuch a sam-
ple tends to exhibit a lower-than-average price
impact because stocks that trade very frequently
are, by definition, very liquid and have much

smaller price impact. Such a bias in our sampling

procedure by no means invalidates onr example’s
relevance. If we can demonstrate that our best-
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execntion strategy is beneficial for
highly liquid stocks, our approach’s
value is likely to be even greater for
less liquid stocks, where price impact
1s significantly higher.

The ITG databasc provides valu-
able trade information, but we must
augment our analysis with NYSE
"TAQ data to extract quates prevailing
at the time of ITG trades. The TAQ
database is a complete history of all
trades and quotes on the NYSE,
AMEX, and Nasdaq exchanges.

Finally, we use S&P 500 tick data
provided by Tick Data Inc. to get in-
traday levels for the S&P 500 index
during 1996.

The estimation procedure

Our estimadon procedure consists of
three steps. First, we estimate the para-
meters g, and ¥, of the no-impact price
dynamics (see Equation 4) for each
stock. Given the geometric-Brownian-
motion specification, we know that the
continuously cempounded returns z;,
are independently and identically (I112)
nortmal random variates:

By log(.-_piL] ~ N(J"I‘f!o?) 13
' Pii1

for cach stock ¢, where 7 = 1, ..., 25

and N (i, 67) is the normal distribu-
tion with mean g; and variance of.
The no-impact price is taken to be
the midpoint of the prevailing bid and
offer prices at time # (hence the need

for quotes):

b
5= P+ P
it 7

(14)
where 4 and §# are the bid and ask
prices for stock 7 at time . For each of
our 25 stocks, we collect TAQ quotes
at every half hour over the coursc of
the 1996 trading year and calculate
the midpoint to construct the no-
impact prices, fi;. Thus, the time in-
dex, t, ranges over half hours, t= 1, 2,
oo, N3, where N is the total number
of half hours in the 1996 trading year
(approximately 250 days times 13 pe-
riods per day).

We then form log returns according
to Equation 13 and discard any overn-
ight returns to eliminate non-
synchronous trading effects. This
gives us a sample of 2,069 observations
of z, during the 1996 calendar year
from which we can estimate i, and %,
in the standard way. Table 2 summa-
rizes the results {to conserve space, we
report estimates only for the first five
stocks of 'Table 1). The drift and
volatility are expressed in percent per
year; we scale them up from the half-
hourly units by assuming cach of the
250 trading days per year consists of
13 half-hour trading intervals. The
drift and volatility estimates are con-
sistent with intuition and agree rea-
sonably well with other data sources
such as BARRA.

COur second task is to estimate the
parameters of the market-information
process in Equation 6. The variable
captures the potential impace of
changing market conditions or private
information about the security. For
example, we could construct a short-
term excess-returns model for this
purpose. In our example, &, denotes
the half-hourly returns on the S&P
500 index, a common factor that in-
fluences the prices of most securities.
For this specification, the AR{1) coef-
ficients, €, and the covariance matrix

of the noise, X, reduce to scalar

quantities, ' and g, Using the S&P
500 tick data from 2 January to 31
December 1996, we construct the re-
turns &, where t is the same time in-
dex used previously. We rescale the
returns by subtracting out the mean
and dividing by standard deviation.
‘This leaves us with a zero-mean, unit-
standard-deviation process:

~” X, —
PR
e

(15)

x

Assuming |Cl < 1, we can rewrite
Equation 15 as

E=CF_,+n,

The maximum likelihood estimator
of the AR(1) cocfficient C'is
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Table 2, Parameter estimates and correlations for the no-impact
price process p, for five stocks, using 2,069 half-hourly observations
from 2 January to 31 December 1996. The first and second rows
give the annual drift and volatility parameters {percent/year)
scaled up from half-hourly estimates by assuming 250 trading days
with 13 half-hour periods per day. The last five rows report the cor-
relation coefficients for the half-hourly returns of the five stocks.

[540.167 110283 |

co o 02287 ¢

R i%"‘ﬁ*"“x‘ ®
961210284 111 70.226 " 0385

0.173 .

(16)

To avoid nonsynchronous trading effects, we dis-
card all products &, %,_| that straddle an overnight
period in Equation 16 numerator. Similarly, we
exclude overnight-return terms from Equation
16's denominator. The constants, 7| and 75, are
the number of terms that are included in calcu-
lating the numerator and denominator and are
1,902 and 2,078. Our estimate of C'is (1.0354.
(Not surprisingly, the level of scrial correlation
in the S&P 500 index is quite low. If not, prof-
itable trading strategies would be possible that
would quickly drive the predictability of index re-
turns back to a low level.)

Given €, the maximum-likelihood estimator
for the standard deviation of 7, is

o, =VI-C?,

Our estimate is 0.999. The parameters € and 5,,
fully characterize the AR(1) process that de-
scribes the S&P 500 returns,

Grur final task is to estimate the parameters A4
and B of the price-impact equation (see LEqua-
tion 5). We can recast the vector equation as 25
separate linear regressions by rearranging terms:

P’}~ Lis = p5,a; + b s
it
where 4, and b, are the 7th rows of A and B. This

expression shows that the percentage price im-
pact to the jth security is a linear function of the

dollar volume we intend to trade in the #th secu-
rity, the dollar volumes that we and others are
currently trading in the other 24 stocks, and the
S&P 500 return over the preceding half hour.

Obviously, trading in stock 7 should have a price
impact on p,. But less obvious is the role that trad-
ing in other stocks might play in determining the
price impact on py,. Such cross-effects have sev-
eral economic sources. One stock might be a close
substitute for another, so a high price impact for
one would imply the same for the other, Another
motivation is that, in a market with sharply rising
(or falling) prices and high volume, the overall
market impact will likely increase as liquidity
providers demand higher premiums above posted
quotes for large market orders.

To estimate A and B, we use a combination of
ITG proprietary data, TAQ data, and SPX tick
data. For each executed market order in a given
stock #, the TG database gives complete infor-
mation about the market order except for the
prevailing quote. We search the TAQ database
to find the quote. As before, we form the no-
impact price, ji, as the average of the bid and of-
fer (sce Equation 14) and then construct the de-
pendent variables,

Liz — Dir
P
for each trade. The ITG database provides one
independent variable—namely, the dollar vol-
uine of stack & fj, 5.

A difficulty arises in constructing other dollar-
volume-related independent variables {that is,
fie sy for i # ). The ITG data is too sparse to find
nearby trades in time, so we must turn to the
TAQ darta to resolve this observability problem.
One possible solution is to use the nearest TAQ
trade that occurs before an I'TG market order.
Unfortunately, the time alignment of the TAQ
and I'T'G data sets can be imprecise because of
recording lags by either party. To reduce the im-
pact of this type of error, we define a proxy for
the closest trade by forming a 30-second win-
dow before each market order and computing
an average dollar volume within it. Although this
averaging procedure tends to smooth the data
and reduces its information content, it cnsures
that temporal sequencing is not violated.

Specifically, we find all N, trades in stock f that
occur within that window. Each trade is executed
at price pu, where k= 1, ..., N,. Trades that are
executed above or at the midpoint of their
quotes are classified as buys, and the rest as sells.
We then compute an average dollar volume
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within the window for stockf as
. 1 G,

= D B
pﬂ Jt NI( e Pﬂc Jk

Finally, for the S&P 500 return, x, we split the
trading day into 13 half-hour intervals and com-
pute the return in the half hour before the trade.

We now have a complete set of data with which
to estimate the parameters of our model’s price-
impact portion. We performed the regressions in
SAS; they contained no intercept term hecause
the price impaci should be zero if no stocks are
being traded. Table 3 summarizes the first five of
the 25 regressions. For each regression, the table
reports the parameter estimates for the 26 re-
gressors—the lagged returns for the 25 stocks and
the S&P 500 lagged return—and their f-stadstics,
R? and the sample size appear at the hottom of
cach column, (We performed diagnostics on the
residuals to test for the presence of heteroskedas-
ticity and autocorrelation. The Durbin-Watson
test indicated low levels of positive serial correla-
tion, with statistics ranging from 1.12 to 1.69 for
the 25 regressions. The test of first and second
moment specification indicated a very weak pres-

ence of heteroskedasticity, because the p-values
were, in general, very low.)

"1o develop some intuition for the coefficients,
consider the estimated price impact for Ameri-
can Home Products in 4 caused by trading in
AHP, which is 4.97 x 1071, according to 'Table
3. If we traded a 100,000-share block of AHP at
its beginning-of-year price of $64.0625 with no
impact, our total cost would be 100,000 x
$64.0625 = $6,406,250. But according to 'Table
3, the full-impact cost would be

100,000 x (3, + 6, ) =100,000 x ($64.0625 +4,)
8, = ;1(4.97 x107° % 3, x 100,000) = 0.203969
100,000 % (p, + 5,) = $6,426,647

which implics a price impact of approximately
20 cents per share (ignoring the other factors in
the regression). This estdmated price impact is
unacceptably high; no professional trader would
subinit such a large order except in the most des-
perate circumstances.

Further inspection of the regression diagnos-
tics shows that B ranges from 0.052 to 0.440 for
the 25 regressions, indicating that the regressions
have varying degrees of explanatory power. How-
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Table 3. Coefficients of the unconstrained price-impact regressions
for five stocks, based on market orders from 2 January to 31 Decem-
ber 1996. All coefficients have been multiplied by 10 except the
SPX coefficients, which have been multiplied by 10°. The last two
rows contain the sample size T and R? coefficients; the t-statistics
appear in parentheses below the coefficients.
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ever, 30% (193 of 625) of the #-statistics are sig-
nificant at the 5% level, implying the importance
of factors other than own-stock trading in deter-
mining price impact. Also, 18 of the 25 own-stock
price-impact terms—that is, &, {the sth diagonal
entry of A)—are statistically significant. These
terms should be the most dominant in deterinin-
ing price impact, and our regression confirms this
conjecture. Nevertheless, cross-stock effects are
significant.

Consider, for example, the AHP regression:
while the own-price effect has a coefficient of
4.97, cocfficients for BLS and FINM arc 4.46 and
—5.10. That these two cross-stock coefficients
have oppesite signs underscores the portfolic ap-
proach’s importance for minimizing execution
costs. Because of significant cross-stock price-
impact effects, the expected cost of executing a
portfolio is not simply the sum of the expected
values of executing each security in isolation.

Although some regressions have low explana-
tory power, recall that we have proposed a rather
naive specification for these regressions, omitting
many other variables that proprietary traders and
other professional portfolio managers have at
their disposal. But even with our naive specifica-
tion, we still achieve R*s as high as 0.440 (for
Merck, not shown in Table 3}, which is quite sub-
stantial, considering the data’s high frequency.

No-arbitrage constraints

One additional aspect of the estimation proce-
dure must be considered: whether or not the pa-
rameter estimates yield a well-posed optimization
problem (see Equations 1 and 2). Tn particular, for
certain parameter values, the optimization prob-
lem is not convex, so the objective function can
be made arbitrarily negative. The economic in-
terpretation for such circumstances is an arbitrage
opporeunity (also known as a “free lunch”), a sitna-
tion in which riskless profits can be manufactured
out of thin air. Ordinarily, this would be a wel-
come state of affairs for investment professionals.
In this case, the arbitrage is more likely a spuri-
ous side effect of sampling variation in our para-
meter cstimates,

16 aveoid these false-arbitrage opportunities, a
no-arbitrage restriction should be imposed on the
estimation procedure. For the linear-percentage
price-tmpact model, we accomplish this by con-
straining both A and A- R to be positive definite
matrices. This, in turn, involves estimating a con-
strained linear-regression maodel. ‘lable 4 reports
the results of such a procedure. The two most stg-
nificant differences between Tables 3 and 4 are
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that the latter shows lower R*s and the higher sig-
nificance of the own-stock coefficients, The for-
mer is not surprising, because any constraint is
bound to decrcase the regression’s explanatory
power, although the decline is rather small for AN
and DD. The higher significance of own-stock
coefficients follows from the definition of posi-
tive definiteness—that is, a°A4x > 0 for all vectors
«. The diagonal elements of A are coefficients of
squared terms of the x values in the matrix prod-
uctx’Ax. Therefore, by making the squared terms
sufficiently large relative to the cross-terms, we
arrive at a positive definite matrix,

As Table 4 shows, the cross-effects are also af-
fected by the no-arbitrage constraing, hightighting
its significance in the portfolio context. For exam-
ple, in AHP’s case, the cocfficients of BLS and
FNM are ngw smaller (3.49 and 0.01) than in Table
3 (4.46 and —5.10), where the no-arbitrage con-
straint has not becn imposed, However, the coeffi-
cients of MCD and WMT become larger, in-
creasing to 3.38 and 3.70 from 2.56 and 1.58 in
"Table 3.

Table 5 shows the ratic of the total sum of
squarcd errors of the constrained regression to the
unconstrained regression for all 25 stocks. The in-
crease in squared crrors is approximately 5% over-
all, a rather modest increase that provides some
support for imposing the restriction. More im-
portant, if the no-arbitrage condition were not im-
posed, the dynamic-optimization algorithms de-
scribed carlier might vield nonsensical results.

The empirical results of Tables 3 to 5 suggest
that the state equations necessary for our dynamic-
optimization algorithm can be estimated reason-
ably accurately and that a portfolio approach to
execution-cost control has significant benefits,

Monte Carlo analysis

Having calibrated the state equation (see “The
estimation procedure” section} for the linear per-
centage case (see “The state equations” section),
we now investigate the performance of the best-
execution strategy through Monte Carlo simula-
tions. Specifically, we consider minimizing the ex-
ecution costs of purchasing s shares of each of the
25 stocks in Table 1 over T periods. This accurs
under the price dynamics (sec Equations 3 to 6)
where 4 and B are the estimates A and B from
the constrained regression (see the previous sec-
tion) and C, i, and X, are as we estimated in
“The estimation procedure” section. We assume
that the baseline covariance matrix of the no-
mpact price is X, and that che initfal no-impace
prices are the prices in Table 1 (closing prices se-

Table 4. Coefficients of the constrained price-impact re-
gressions for five stocks, based on market arders from
2 January to 31 December 1996. All coefficients have
been multiplied by 10'® except for the SPX coefficients,
which have been multiplied by 10°. The last two rows
contain sample size Tand R? coefficients; t-statistics are
|n parentheses below the COEffICIEI"ItS
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Table 5. Ratios of the sum of squared residuals of the unconstrained and constrained price-impact regressions for 25

stocks, based on market orders from 2 January to 31 December 1926.
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Table 6. Monte Carlo simulations of optimal execution  lected from a random trading day in 1996).

strategies with short-sales constraints for purchasing 5 To gauge the sensitivity of execution costs to
shares of all 25 stocks in the portfolio over T periods. the model’s parameters, we vary the time hori-
Each row corresponds to an independent simulation zon, T, the number of shares traded, s (assumed

experiment consisting of 10,000 IID replications. Costs  the same for each stock), and the no-impact price
are in cents per share. Tis the number of execution pe-  valatility. We modify the price volatility by scal-
tiods. § is the amount of shares to purchase. k, is the ing the variances by a constant while keeping the
scaling of the volatility. s*is the average execution cost ~ correlation structure fixed. The results for
for the optimal strategy with no short-sale constraints. 10,000 replications are in Table 6, which reports

S, Isthe average execution cost for the optimal the expected execution cost in cents per share.
strategy with short-sale constraints. §/T is the naive The table aiso lists the standard error of the es-
strategy’s average cost. Standard errors are in paren- timate for the best-execution strategy (s*), the

strategy under no-sales constraints computed
through the static-approximation method (s7),
and the naive strategy (s/T). .

Some general patterns emerge from the simu-
lations. First, as 7 increases, execution costs fall,
Because we can spread the trading over more
time periods, and because we have the flexibility
ta be more patient and wait for particularly op-
portune times to trade, expected costs decline.
Second, as § decreases, execution costs also de-
crease, With small-enough trade sizes, the ex-
pected price impact is negative! This is because
the price impact consists of two terms: the im-
g 2 pactof shares traded, 5, which is quadratic in the
¢ {0.46); - ( 23, share size, and the impact of information, which
04 is linear in the information variable, x,. When we
_ trade small-enough quantities, the quadratic term
B 783 eiv e is negligible and the information term dominates.
%:62) = ;@5{);‘ Icrjﬁf 2% Ourstrategy optimally uses information so as to
§479) 004, efﬂ%f 4% trade when trading is least expensive. For suffi-
£0:84)c+ ;@33%)?? 0198) S0 I1 ciently significant pieces of information, trading
3;?1% fé 3@? 63 ﬁ ; ;; can be quite proﬁtab.le (not anew ir.might to pro-
L ) QQ?@;‘ (5% prietary traders). Finally, increasing volatility

4 2691 2H7A94. -« seems to increase execution costs slightly.

In all but two cases, the optimal strategy out-
performs the naive on average. In the two anom-
alous cases, the confidence interval of the differ-
ence between the two strategies is so wide that
this outcome could easily have occurred purely
by chance. If we increased the number of repli-
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cations to 100,000, these two anomalies would
no doubt disappear.

Another anomalous result is that for some
simulations, the constrained strategy’s execution
cost 1s less than the unconstrained strategy’s cost.
Although the point estimates are indeed reversed
in these cases, the sampling variation is so great
(consider their standard errors) that making ac-
curate inferences about their relative magnitudes
is difficult, Indeed, the differences are not statis-
tically significant. For the cases we consider, the
no-sales constraint seems to have relatively lit-
tle impact on the best-execution strategy’s per-
formance, except in cases with negative execu-
tion costs. To achieve negative execution costs,
the no-sales constraints must be violated, so im-
posing them increases the costs dramatically.

Of course, these conclusions are highly portfo-
lio- and time-period-specific. Similar analyses
should be conducted case by case to determine the
value added by the best-execution strategy in a
given context,

he remaining challenge is to integrate

these best-cxeeution strategies directly

into the investment process, which re-

quires solving the portfolio optimiza-
don problem subject to transactions costs. This is
a formidable challenge that is both theoretically
and computationally intensive, and we plan to turn
to these problems in future research. &
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